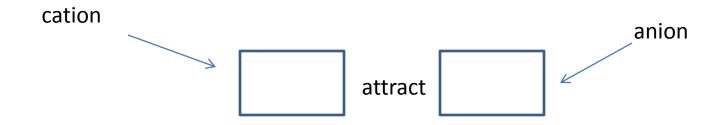
Introduction to Ionic bonding

Schweitzer 11-14-07

Bonding General

- Bonding is an attractive force holding atoms together.
 - Forces:
 - Nuclear Force: Very strong force holding the nucleus together.
 - Electrostatic attraction: The attraction of positive and negative particles together.
 - Gravitational: Mass attracting to other masses. Minimal until the mass reaches very large amounts... Like planets. Sometimes referred to as the weak force.
 - Magnetic Force.

BOND TYPES

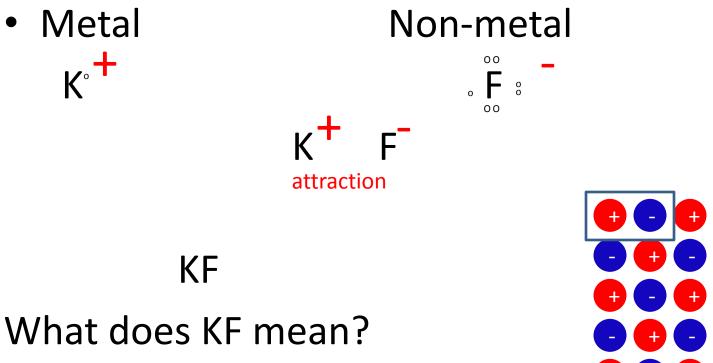

- Ionic
 - Valence electron transfer
- Covalent
 - Valence electrons being shared
- Metallic
 - Sea of electrons. Good conductors

What do I really have to know about Ionic bonding

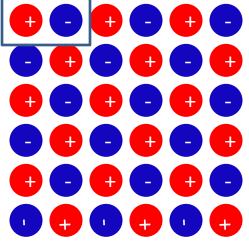
 You must be able to recognize an ionic formula when you see one!!!!

IONICC ATION = ANION

Metal (cation) bonded to a non-metal (anion) Na⁺Cl⁻

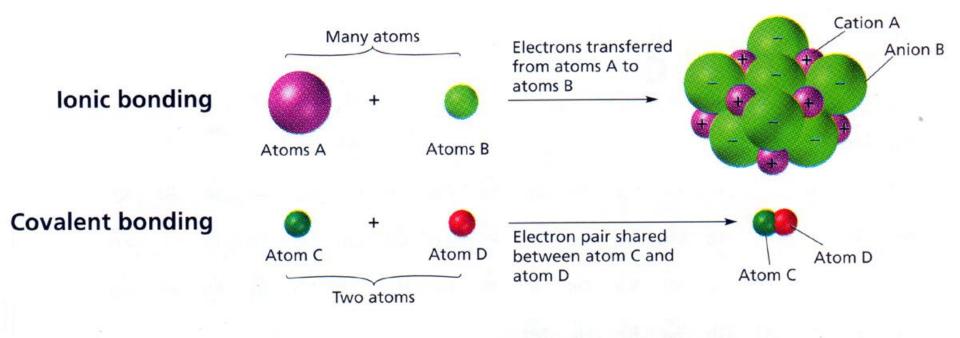


- A Family might also fill the role of the cation or anion.
- Ammonium = NH_4^+
- Nitrate = NO_3^{-1}

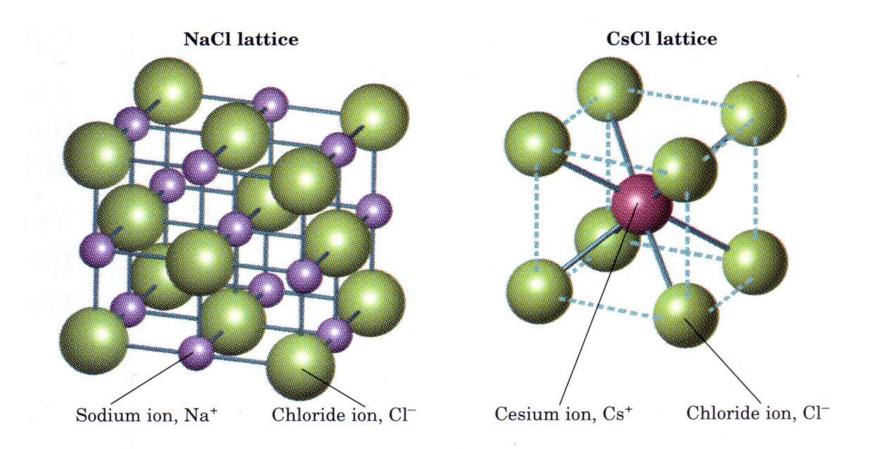

Notes Outline

- Ionic Compounds
 - Metal = Non-metal
 - Cation = Anion

IONIC FORMATION OF AN IONIC SUBSTANCE



Empirical formula: simplest ratio of atoms



Ionic vs. Covalent

Formula unit vs. molecule

Crystalline structure

IONIC SOLID PROPERTIES WHAT FACTORS AFFECT THE MELTING POINT OF IONIC COMPOUNDS

- Difference of Charge
 - High melting points

– +'s attract to many –'s

Practice

- Assign the following substances their ionic charges
- Arrange them in order of increasing melting point.
- Ca₃P₂
- Nal
- MgSO₄
- MgCl₂
- AIN

Practice

- Assign the following substances their ionic charges
- Arrange them in order of increasing melting point.
- Ca₃P₂ Ca⁺² P⁻³
- Nal Na⁺¹ I⁻¹
- MgSO₄ Mg⁺² SO₄⁻²
- $MgCl_2$ Mg^{+2} Cl^-
- AIN AI⁺³ N⁻³

Practice

4

1

3

2

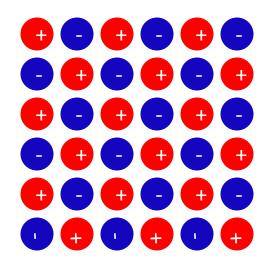
5

- Assign the following substances their ionic charges
- Arrange them in order of increasing melting point.
- Ca₃P₂ Ca⁺² P⁻³
- Nal Na⁺¹ I⁻¹
- $MgSO_4$ Mg^{+2} SO_4^{-2}
- MgCl₂ Mg⁺² Cl⁻
- AIN AI+3 N-3

Notes Outline

- Ionic Compounds
 - Metal = Non-metal
 - Cation = Anion
 - Empirical formula
 - Simplest ratio of atoms
- Strength of ionic bonds (crystalline structure)
 Difference of Charge

IONIC SOLID PROPERTIES


WHAT FACTORS AFFECT THE MELTING POINT OF IONIC COMPOUNDS

Atomic Radius

The larger the radius the weaker that attraction!

- NaF
- NaCl
- NaBr
- Nal

Larger Atomic radius equals weaker bonds

Practice??

• List the following substances in order of increasing melting points.

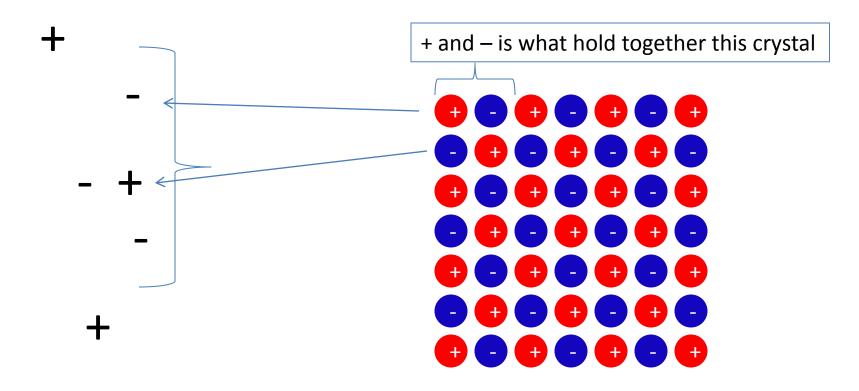
- $CaCl_2$
- NaCl
- NaF
- AICl₃
- AIP

Answers

• List the following substances in order of increasing melting points.

Lowest melting point = lowest attraction

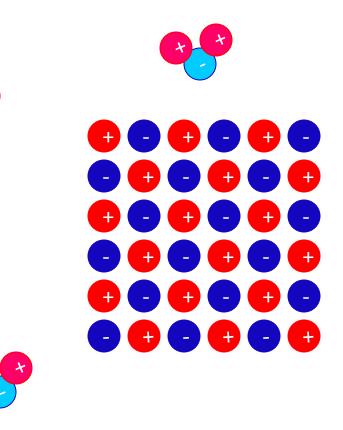
- CaCl₂ Smallest charge difference +1/-1
- NaCl
- NaF
- AICl₃
- AIP


Cl has a larger radius and is therefore a greater Distance away making it weaker

Notes Outline

- Ionic Compounds
 - Metal = Non-metal
 - Cation = Anion
 - Empirical formula
 - Simplest ratio of atoms
- Strength of ionic bonds (crystalline structure)
 - Difference of Charge
 - Atomic radius

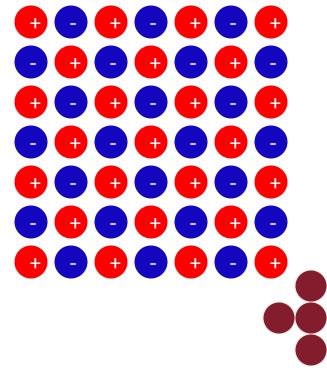
DISSOLVING IONIC CRYSTALS


- Electrostatic attraction holds together the ionic bond, but what happens if other +/- are present in the solution?
- Salt will break apart (dissolve)
- Ionic compounds can dissolve in polar solvents(charged)

DISSOLVING IONIC CRYSTALS

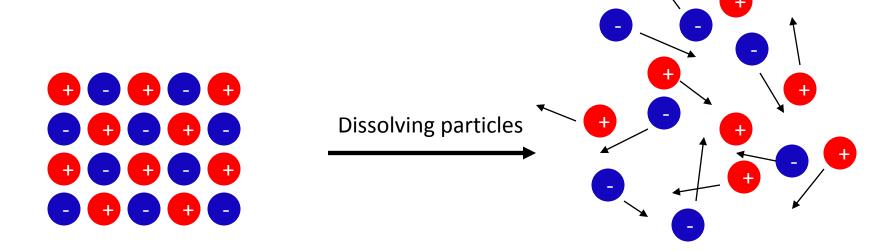
Electrostatic attraction pulls apart

Do you see how a substance might become saturated???



Dissolve salt in non-polar solvent???

• Non-polar

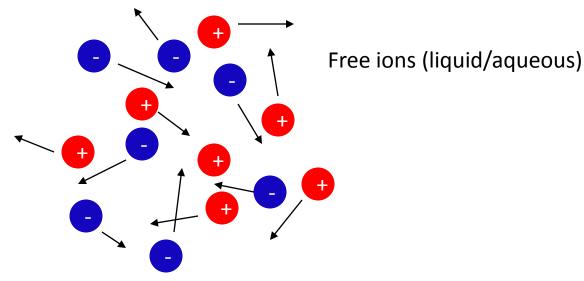

There is no reason For the ions to separate

IONIC CRÝSTAL DISSOCIATE IN SOLUTION

- NaCl \rightarrow Na⁺ + Cl⁻
- $Na_3PO_4 \rightarrow 3Na^+ + PO_4^{-3}$

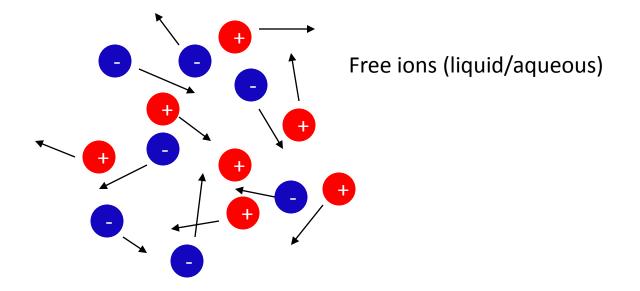
Solid Ions

Free ions (liquid/aqueous)



Notes Outline

- Ionic Compounds
 - Metal = Non-metal
 - Cation = Anion
 - Empirical formula
 - Simplest ratio of atoms
- Strength of ionic bonds (crystalline structure)
 - Difference of Charge
 - Atomic radius
- Dissolving ionic compounds
 - Better opportunities


Property of Ionic solutions

- Charged lons conduct e⁻
 - Pure water does not conduct electricity
 - Dissolve some ionic compound in water and it conducts electricity.

Property of Ionic solutions

- Requirements for a solution to conduct electricity
 - Free moving charges

Notes Outline

- Ionic Compounds
 - Metal = Non-metal
 - Cation = Anion
 - Empirical formula
 - Simplest ratio of atoms
- Strength of ionic bonds (crystalline structure)
 - Difference of Charge
 - Atomic radius
- Dissolving ionic compounds
 - Better opportunities
 - Electrolyte/non-electrolyte